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ABSTRACT

v
273779

The concepts of frequency response and power spectrum,
so well-known in the aircraft industry, are extended to the
problem of obtaining the statistics of the rigid-body bend-
ing moment response of a typical vehicle as it rises through
the atmosphere. The mean and standard deviation of the re-
sponse at the "critical" altitude are obtained utilizing
wind statictics collected at Cape Kennedy, Florida. Essen-
tially the method 1s based upon the computation of the re-
sponse of the vehicle to sinusoidal wind profiles of various
wave-numbers and upon the generalized power spectrum of
the wind velocity. Under the assumption that the response
is Gaussian, extreme-value bending moment loads are esti-

mated which would be useful for preliminary design purposes,
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SYMBOLS

impulse response function
frequency response function
wave-number

bending-moment at station n

complex response function of vehlcle to

sinusoidal input e1kz

response of the vehicle to a cosine wind-velocity
profile

response of the vehicle to a sine wind-velocity
profile

wind-velocity

Fourier transform of u(z)

Dirac delta function

correlation coefficient

standard deviation

response covariance function
wind-veloecity covariance function

wind-velocity generalized power spectral density
function

expected value of
matrix

transpose of matrix




I. INTRODUCTION

To insure a feasible design for the primary structure
of an aerospace vehicle, an engineer must have available
analytical methods for estimating beforehand the loads that
may be induced in the vehicle during flight., The loads of
particular concern here will be the bending moment loads
induced in the vehicle as 1t rises through its environment

of random wind disturbances,

Usually in order to obtain a preliminary estimate, a
digital computer 1is programmed to simulate the flight of
the vehicle as it "flies" through é wind profile or a series
of profiles. The profiles used may be real1 or they may be
synthetic, that is, they may be based on observed extreme
wind conditions without actually representing any of the
observed profile52’3° It should be noted that the latter approach
is the subject of considerable controversy because of the
difficulty of selecting or deriving a "critical” profile.

In order to obtain more detailed load statistics, a method
called the "statistical load survey" 1is then employedu°
Essentially, a large number of representative wind profiles
are assembled and, for each of these, the corresponding
response of the vehicle is computed, Response statistics

are then estimated from an analysis of the resulting re-

sponse records.




While this method is straightforward, it 1s relatively
expenslve as 1t requires considerable time to carry out
enough computer calculations to aceumulate a sufficient
"statistical sample". Also, nothing may be inferred about

loads which were not achieved, In a previous paper5

s the
authors indicated this shortcoming and proposed a method
which makes a more effective use of the results of a "statis-
tical load survey"., If certain requirements are satisfied,
this method makes it possible to obtain the statistics of
loads that were never achieved in the sample, Also, methods
were proposed by which the use of a statistical load survey
may be avoided altogether., Under the assumption that the

" vehicle constitutes a linear system, it was shown how the
response statistics of the vehicle may be obtained from

the wind fileld statistics and the equations describing the
vehicle, Various methods were proposed, utilizing the
concepts of impulse response functions, system adjoint
functions, and frequency response functions to describe

the system, while covariance functions and generalized

power spectral density functions were used to describe

the wind field,

The purpose of this paper 1s to apply one of the
suggested methods to a typical launch vehicle. The method
to be presented utilizes frequency concepts, that 1is, 1t
characterises the vehicle by means of frequency response

functions and the random input field by means of power




spectra, Since the wind-velocity field 1s a nonstationary
(nonuniform space-wise) field, a generalized power spectral
density functicn must be used. Also, since the coefficlents
of the equations defining the system are space-dependent,

a space-dependent frequency response function is required,

Power spectral techniques have been applled quite
successfully to the problem of determining the dynamic re-
sponse of alrcraft to atmospheric turbulence for a period
of over ten years. It evolved quite naturally, since
turbulence is a random process, as an alternative to the
discrete-gust approach and 1s used at present in conjunction
with discrete-gust analysis. To quote Reference 6, "the
main assets offered by the power spectral approach are as

follows:

l, It allows for a more realistic representation of

the continuous nature of atmospheric turbulence,

2, It allows airplane configurations and response
characteristics to be taken into account in a rational

manner,

3. It allows more rational consideration of design
and operational variations such as configuration changes,

mission changes, and airplane degrees of freedom",




It is felt that perhaps some of the above-mentioned assets
may be equally valid when the system under consideration
is a launch vehicle, Discrete-wind profile methods
already are being used in industry. As methods of wind
measurement become more refined, allowing wind shear and
atmospheric turbulence to be considered Jointly, so should

the techniques used to estimate the response of the vehicle,

As an 1llustrative example, the mean and variance of
the rigid-body bending moment are computed at five locations
on a typlcal launch vehicle, as the vehicle passes through
the critical altitude of 36,000 feet. This altitude
corresponds to the point of maximum dynamic pressure and 1t
1s also the altitude at which the vehicle recovers from
the large wind shear reversal which characterizes the wind
profile in the area of Cape Kennedy where the wind data
was collected, It is thus the altitude at which the vehicle
response may be expected to be maximum. The motion 1is
constrained to the pitch plane and the analysis uses only
the dominant (East-West) component of the wind field. It
should be noted that the assumptions made regarding the
launch vehicle are consistent with the methods of analysis
used today. The omission of the elastic modes may be
justified by the predominance of the rigid body modes in
the structural load response of large and relatively stiff

vehicles to wind disturbances.

-8 -




Under the assumption that the wind velocity is Gaussian,
extreme-value design loads are computed, It is felt that

the results obtained should be useful for preliminary design,

2, ANALYSIS

Let q®(z) represent the bending moment induced in the launch
vehicle at station n, located along the axis of the vehicle,
when the vehicle 1s at height z (Figure 1). Since the system
is assumed to be linear, qn(z) is defined as the solution of

the following linear differential equation:
L q"(z) = u(z) (1)

where L represents a linear differential operator with z-
dependent coefficients and u(z) represents the wind-velocity
profile, It is well-known in the theory of linear systems
that the solution of Eq. (1) may be expressed as a con-

volution:
V4
q?(z) = Io h"(z',z) u(z') dz' (2)

of the wind profile and of the function h"(z',z) which

represents the solution of:
L q"(z) = §(z-2") (3)

The function &(z-z') is the Dirac delta function and repre-

sents a unit wind impulse at height z', The corresponding

-9 -




response h(z'z) will be referred to as the impulse response

function of the vehicle,

The mean value of the response of the vehicle at height
z 1s obtained by averaging both members of Eq. (2) over the
ensemble of flights considered.

<q®(z)> = j: h(z',z) <u(z')> dz' €))

Note that the mean response <q®(z)> may be computed as
the response of the vehicle to the mean wind velocity

<u(z)>.
The covariance function of the response, defined as
@ (71,22) = <(a®(z1)~<a(21)>) (" (25)=<a"(2;)>)> (5)

is obtained by subtracting Eq, (4) from Eq. (2), member by

member, and substituting the result into Eq. (5)
Z) Z22 n n
(qu(zl,zz) = 50 ;o h™ (2] ,z))h"(2},2,) @  (z],z3)dz{dz} (6)

where @aﬂl i1s the covariance function of the wind-velocity
fileld. The variance of the response at height z would be
obtained by setting z;=z=z in Eq. (6). Thus, Eqs. (4)

and (6) represent the solution of the problem and this 1is

- 10 -




essentially the method used by Bieber7. However, as

suggested in our previous papers, the use of frequency re-
sponse functions, instead of impulse response functions,
may result in a reduction of the required computations,
thus saving valuable computer time, Also, it may help to
visualize the system better since i1t 1s felt that frequency
concepts are more familiar to people involved with aero-
space systems, Thus, we presented an alternative method
that 1s based upon the computation of the response of the
vehicle to sinusoidal wind profiles of various wave-numbers

k., Setting
u(z) = elk? (1)

in Eq. (1), the following set of differential equations
is obtained

L qn(z) = eikz (8)

which define the desired responses, Denoting the solutions
of Eq. (8) by Q"(z;k), the frequency response function

H?(z;k) 1s defined by the relation
Q%(z3k) = H(z;k) elKZ (9)

Note that, contrary to the case of a system characterized
by a differential operator with constant coefficients, the
frequency response function of the vehicle depends upon

the helght 2z,

- 11 -




Substituting for u(z) from Eq. (7) into Eq. (2), the
following relation between the function Q"(z;k) and the

impulse response function 1s obtained

n _zn, i1kz!
Q (z3k) = jo h™(z',z) e dz' (10)

and, by dividing both members of Eq. (10) by eikz, the

corresponding relation between the frequency response func-

tion and the impulse response function is obtained
Z
H%(z;k) = Io n®(z',z) e-1k(2-2') 45, (11)

which 1s the usual definition of a frequency response
function ., Note that Q" 1s a complex function and may be

rewritten as

Q"(z3k) = Q7 _(z3k) + 1 Q7, (z3k) (12)

where, using Eq. (10),

Z
ons(z;k) = ;o h(z',z) cos kz'dz' (13a)
and
Z
Qg (23k) = Io n(z',z) sin kz'dz" (13b)

The functions Q:OS and Q:in represent the response of the
vehicle at station n to a cosine and a sine wind-velocity

profile, respectively,

- 12 -




To express the mean response of the vehicle in terms
of the function Q"(z;k), we first take the Fourier transform

of the mean wind velocity
U(k) = 5: cu(z)> e"1K% g (14)
and substitute for <u(z)> into Eq, (4) the inverse transform
u(z)> = (1/2v) = U(x) e**% ax (15)
Noting Eq. (10), we obtain the expression

<q®(z)> = (1/2x) {7_ Q@®(z3k) U(k) dk (16)

for the mean response of the vehicle, However, since
u(z)=0 for z<0 1t i1s possible to simplify Eq. (16) with

the result that (see Appendix A)

<«q®(z)> = (2/7) ;: Q:OS(z;k) Re U(k) dk (17)

where Re denotes the real part of the function.

In order to use frequency concepts to obtain the
variance of the response, we replace the wind-veloclity
covariance function by its generalized power spectral
density function., This 1s defined as the double Fourier

transform of @Lui

- 13 -




¢uu(k1,kz) = I:f: @;u(zl,zz) ei(klzl"kzzz) dz4z, (18a)

and the inverse relation is

@, (71,22) = (17212 [Z_§= o, (ky,kp)el (¥222=K121) gy gy,
(18b)
Substituting for @Lu from Eq. (18b) into Eq. (6), we obtain,

after using Eq. (10), the following expression for the

response covarlance function

oo oo n
@ﬁu(zl ,Zz)=(1/2ﬂ)25_wj_wQ ®(z, ;kl)Qn(zz;kz)‘buu(kl ,kz)dkldkz
(19)
where Qn* is the conjugate function of Q®., Thus the variance

of the bending moment at station n as a function of height
1s gliven by

szq(Z,z)=(1/2w)2f:wf:an*(z;k1)Qn(z;kz)éuu(kl,kz)dkldkz
(20)
However, by using an argument similar to that presented

in Appendix A for a Fourler transform in one variable, when

u(z)=0, z<0, Eq. (18b) may be simplified with the result

@aq(z;,z2)=(2/n)2]:I: Re o (ki,k;) cos (kpzp-k121)dkidk,
(21)

so that Eq. (20) becomes, noting Eqs. (13),

- 14 -




@ (2s2) = (2/m)2 (72 Q7 (z3k1) Q7 (Z3ky)

n
sin

+ Q2. (z3k;) Qiin(z;kz)] Re o (ki,kz)dkidk, (22)

where Re denotes the real part of the function. In matrix

notation, Egs. (17) and (22) become

<q™(z)> = (28k/%) [Q2_ 1 [Re F1” (23)

and

@ (2s2)=(20k/m)2([Q7  I[Re o 10a2 T7+[a2, I[Re o  1[qZ, 1T)
(24)

Eqs. (17) and (22) or, alternatively, Egqs., (23) and (24)

provide the solutioh of the bending moment response problem,

3. VEHICLE RESPONSE FUNCTIONS

As indicated by Egqs. (17) and (22), it i1s necessary

n

' : n
to compute the functions Qcos and Qsin’

i.e., the response
of the vehicle to cosine and sine wind-velocity profiles.

This was accomplished by utilizing an existing high-speed

computer program (Langley Program P6382) and the computer

facilities (IBM 7094 computer) at Langley Research Center,
Virginia, A detailed description of the typical launch

vehicle consildered, equations of motion, and computer

-15 -



program 1s given in Reference 1, However this program
takes into account structural flexibllity and propellant
slosh, These were neglected and only the rigid-body
degrees of freedom were retained, A discussion and
summary of these equations are given in Appendix B, It
should be noted that the equations of motion are nonlinear
and have variable coefficients., However, owlng to the
linearized control system and the small motions involved,
the bending moment response 1s essentially linear. To

verify this a linearity check was performed.

The wind velocity 1s assumed to have the form

sin kz Smk
u(z) = k = —— (25)
cos kz L

where L 1s set equal to the terminal altitude, that 1s,
L=60,000 feet, Thus the response of the system to the above

expressions will be

n
a Qsin(z’k)
q (z) = (26)

n
Qcos(z’k)

Note that these are functions of z for fixed k. Since the
variable of integration in Eqs. (17) and (22) is k, it

is necessary to compute a number of functlons Q" for various

- 16 ~



values of k and cross-plot the results. Figures 2a and 2b
show typical bending moment responses q"(z) for a fixed
value of k, Figure 3 shows the result of the cross-plot
ylelding a function of k for fixed z, The interpolation
was accomplished by means of a second-order interpolation

routine,

4, VEHICLE PARAMETERS

Data for a zero-wind vertical ascent are presented in
Figure U4; time-histories for the dynamic pressure and Mach
number are shown in part (a). As shown in part (b) of
Figure 4 the vehicle was flown to a terminal altitude of
60,000 feet which 1s well beyond the maximum dynamic pressure
condition, All data 1s based on a vertical flight-attitude
program (Figure lc), A normal aerodynamic 1ift distribution
was assumed iIn the form shown in Figure 5, At launch the

vehicle has a thrust to weight ratio of 1.25,

5. LINEARITY CHECK

By definition the system 1s 1linear if, for all combi-
nations of u; and u,, the input u;+u; produces the output
q1+q2. Consequently, the misslile system was subjected to
inputs of the form u=C sin kz where the constant was given
various different values, For inputs of this form, the

bending moment response was found to be essentially linear

- 17 -




throughout the region of interest (Table 1 gives the results

for station 2 where the maximum loads occurred).

6. INPUT DATA

The mean and covariance function used for this sample
computation were obtained from Reference 8 for Patrick
AFB/Cape Kennedy, Florida. This report provides tabulated
data on the arithmetic means, standard deviations, and
correlations of the meridional (North-South) and zonal
(East-West) components of the wind at intervals of one
kilometer for six geographic locations. The statistical data
is computed from observations obtained over a period of
seven years (1951-1957). For this calculation the annual
statistics of the East-West component are used, These are
given in Table 2 and Table 3. Table 2 shows the average
and standard deviation of the E-W winds, Table 3 shows
the correlation coefficients of the E-W winds. The covariance

function 1is computed by using the relation
%%u(zl,zz) = 0,,(Z1,22) 0 (z1) o (z;) (27)

where Puu is the correlation coefficient and %4 is the
standard deviation of the field u. However, as indicated
by Eqs.(17), (22), (14), and (18a), what 1s required is the
Fourier transforms of these functions., Since the available

data 1s not continuous, an approximate numerical procedure

- 18 -




i1s used (Appendix C), It should be noted that methods for
obtaining continuous wind profiles are under current inves-

tigation and should soon be available.

7. RESULTS

The results of the previous analysis are presented in
Figure 8, The mean and standard deviation of the structural
bending moment are given for the 5 stations when the vehicle

is at the height of 36,000 feet,

Assuming that the response is normally distributed,

extreme value loads are computed by noting that the variable

g2 (z) - <q(z)>
/3 (2)

is normally distributed with mean 0 and variance 1. Thus the
required statistics may be found 1in any set of mathematlical

tables, These results are shown in Figure 9.
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APPENDIX A

SIMPLIFICATION FOR COMPUTING FOURIER TRANSFORMS

In order to obtain the results indicated in Eqs. (17)
and (22) we shall first consider the computation of the

Fourier transform of a function u(z) where
u(z) =0 2<0 (A-1)

The Fourler transform pair is given by

U(k) = [7 u(a) e~1kZ g (A-2)

and

ikz

u(k) = 5= - U(k) e*** ak (A-3)

N
3l

However, in view of Eq. (A-1) it may be verified that

Eq. (A-=3) reduces t09

u(z) = % j: Re U(k) cos kz dk (A=)

where Re denotes the real part of the function,

Substituting now for u(z') from (A-4) into Eq. (U),

and comparing Eqs. (14) and (A-2), we obtain

z
<q®(z)> = Io h"(z',z) <u(z')> dz° (A-5)

- 20 =



- 5: h®(z',z)[(2/x%) 5: Re U(k) cos kz'dk] dz' (A-6)

= 2 [* [{* h™(z",2) cos kz'dz'] Re U(k) dk (A=T)
T Yo
which becomes, in view of Eq. (13a),

<q®(z)> = (2/7) j: Qg ,(Z3k) Re U(k) dk (A-8)

which is the desired result.

A similar analysis may be carried out for a double

Fourier transform of ©(z,,z,) where

©(z),2,) =0 zy <0
@©@(z),23) =0 Z,<0

in order to obtain Eq. (22).

-21-




APPENDIX B

EQUATIONS FOR TYPICAL VEHICLE

This section provides a brief discussion of the equations
required for the solution of the sample problem., It should
be noted that the typical launch vehicle considered,
equations of motions, and computer program used for the
calculations are similar to those described in Reference 1
with the exception that only the rigid-body degrees of free-
dom were retained (structural flexibility and propellant
slosh were neglected) and the autopilot and gimbaled engine

equations were appropriately simplified.

Mathematical Model

The coordinate systems to be used are illustrated in
Figure 6., Both body-fixed and inertial (space-fixed) axes
are used, In general, motion is referenced to a Carteslan
coordinate frame fixed in the rigid body and orilented ﬁith
respect to the local horizontal by the attitude angle é.
The velocity vector of the centeg of gravity 1s oriented to
the local horlzontal by y, the flight-path angle, and the
rigid-body motion 1s characterized by translatory motion
along the respective body axes and a rotation about the

center of gravity., The vehicle 1s assumed to be autopilot

—22 -



controlled and subjected to the disturping influence of
the atmospheric winds (in this case, cosine and sine wind
profiles). Control forces are produced by gimbaling the
thrust chambers of the rocket engines an angle § in

response to commands provided by the autopilot.

Equations of Motion

The equations of motion are derived using a variational

principle that is developed from momentum considerationslo;

the equations are

at 98y 9By 1 1

where L is the Lagrangian and Bi is any generalized coor-
dinate, The generalized forces Qsi and 681 resul from external
forces not derivable from a potential and internal forces

due to mass flow within the system, respectively, It should

be noted that while Eqs, (B-1) have the same form as

Lagrange's equations, they are derived from a variational
principle which does not require the assumption of constant
mass, whereas the classical derivation of Lagrange's equa-

tions does.

The general form of the Lagranglan operator in Egs.

(B-1) is referred to the space-fixed frame. Since the
- 23 -




motion of the vehicle is referred to the body-fixed frame,
it is necessary to transform Eqs. (B-1) to a form that 1is
valid in the rotating system. Details of this transfor-
mation to "quasi-coordinates" may be found in Reference 11,
When transformed,"Lagrange's" equations assume the following

forms:

d & -8 + 1ne( )-ZF

at axo ay°

d A + 32 )+cose(3-q-)=2F‘y (B-2)
dt Byo on sh

T A 3,2 -y + e yw

at 38 3o 33X, 20 €-8-

where T and U represent the kinetic and potential energles,
respectively, of the launch vehicle. The generalized forces
account for all external forces and moments not included in

the potential function U,

The details of forming the kinetic and potential
energies may be found in Reference 1. The equations which
result from these operations are summarized at the end of

thls section.

- 24 -



Aerodynamic Considerations

Aerodynamic forces are found by using the quasi-
steady method discussed in Reference 12. This method makes
use of steady-state 1i1ft distributions determined experi-
mentally, Hence, quasi-steady aerodynamic forces are Mach
number dependent but only approximate the unsteady effects,
Since the aerodynamic data avallable for the sample vehicle
consisted of the total normal-force and pitching moment
coefficient CNG(M) and Cma(M) as presented in Figure 7,
an assumed normal aerodynamic 1lift distribution was required.
This 1s illustrated in Figure 5b, The constants C; and C,
were determined so that the assumed distribution produces
CNu and Cma « The afterbody 1lift was approximated by an

exponentilal variation; the forebody 1lift was assumed linear.

Bending Moments

The bending moment acting at any point along the struc-
ture of the vehicle was determined by the loads summation
method as discussed in Reference 13. Application of the
method requires finding the lateral load per unit length and

integrating to find the resultant bending moment,

- 25 -




Symbols and Egquations

(As presented in Langley Working Paper-98 by H.C. Lester,

"A Digital Program for Computing Rigid-Body Launch Vehicle

Wind Loads, Langley Program P6382")

ao(t)

ay(t)

[BM(t)]n
Ca(M)

cna(m)

Cn o (1)

Cn, (x,M)

h(t),r(t)
I, . ()

CoBa

M(t)
My (t)

control system gain

lateral acceleration sensed by an accelerometer
located at coordinate x_, ft/sec?

bending moment at coordinate X ft-1b
axial-force coefficient

slope of normal-force coefficient,

fg Cn,(x,M)dx, radlan~1

slope of pitching-moment coefficient,

L
fo (x-xgg) Cy (x,M)dx, ft/radian

slope of the local normal-force coefficient,

1/ft-radian
force in x and y direction, respectively, 1lb

gravitational acceleration constant, ft/sec?
altitute and range, ft

mass moment of inertia of launch vehicle about
center of gravity. lb-sec2-ft

Length of launch vehicle, ft

pitching moment about center of gravity, ft-1b
Mach number, equal to Vp./Vg

total mass of launch vehicle, lb-sec?/ft
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m(x,t)
Po(h)
a(t)
Se

T, (h),T1(h)

vac! Tx vac

Xa

 Xo(t) ,Fo(t)

a(t)
a, (t)

distributed mass of launch vehicle,lb-sec2?/ft
atmospheric pressure at altitude h, lb/ft?
dynamic pressure, lb/ft?

aerodynamic reference area, g

total thrust of all engines and gimbaled englnes,
respectively, 1b

rated vacuum thrust of all engines and gimbaled
engines, respectively, ft

flight time, sec

center-of-gravity yelocity of launch vehicle,ft/sec
velocity of launch vehicle relative to wind
(defined at center of gravity), ft/sec

wind velocity, ft/sec

coordinates along X- and Y-body axes, ft

coordinate locating accelerometer, ft’
coordinate locating center of gravity, ft

coordinate locating particular bending-moment
station, ft

coordinate locating angle-of-attack sensor,ft'
components of center-of-gravity velocity vectér
along X and Y axes, respectively, ft/sec
rigid-body angle of attack, a« = 6 - vy, radians
angle of attack measured by angle-~of-attack

sensor, radlans
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o (t) wind induced angle of attack, radians

y(t) flight-path angle, radians
s§(t) thrust vector (gimbal) angle, radians
sc(t) thrust vector command angle, radians

and nj3(t)

control system gain ratios

8(t),e_ (t) attitude and attitude command angle,

respectively, radians

ef(t) feedback angle radians
up(t),ua(t)
control system gain ratios
and u3(t)
p(h) atmospheric density at altitude h, lb-sec?/ft"
re(t) engine parameter, sec

A dot over a variable indicates a differentiation with

respect to time t.

A prime over a variable indicates a differentiation with

~respect to x,

Axial equation:
'Y} [ 1] L34 Tt qSO
° Colo o Mt Mg a

Lateral equation:

s, Eﬁ(u+aw) + B2y

Yo = =(Xo=Xc,g.)® - g cos 6 -
o [+ ] [+4 8 Mt Mt Mt

Ne Ngo
+ —=(a+d,) + 80
M M

- 28 -




Pitch equation:

[ ]
se I » T x ) M
g = - ——c8:8 , 1L C-8B s (a+ay)
CQBa Ic.g. IC-S.
Mg . S . . ® e
+ =2 + oo (G40y) + =0
Ic.g. Ie.q. C.8o

Gimbaled engined equation:
REEEE.
e c
Control system equations:

Se = 20 [(8-0) = u18 = uzay = w3ay]

(Xg-Xc.g, ) 8

VEV

a'=u+a‘,—

a’y - .y‘o + (xa-xc.go )..; + (io-zic.g°)e + g cos ©

Bending-moment equations:

(BM), = B;[;; + (i -2ic.g.)3 + g cos 0] + [BZ+B§]€

+ Bylata,] + B3o + Bzl[a+a,]
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Miscellaneous equations:

- 2 2
v, Vfﬁh + V2 4 2V V_ cos y

-1
Gy = sin v J
mnwv
a = tan~l [
Xo
Yy = 0 -~ @

h(e) = [EV_stn vy at
r(t) = [g Vpy cos vy dt
Bl TS

Ty = Tivac = AyPo

T, = T, - (Ar+A2) Po

=M, + M

=
i

tt




Equations of motion Coefficients:
(a) Quasi-steady aerodynamics

N = gS, jg Cng(x,M) dx

. a5, L
Ne B - v—m-:’- IO (x-xc.s.) Cnn(x,M) dx
Ne =
N-e- = 0

L
M, = qS, jo (x-xc,g,) Cp, (x,M) dx

S
o - g-o- (X-Xc.s.)z Cna(x.m) dx

va

=
)
L]

M‘B"O

Bending-moment coefficients:
(a) Mass
L
By = - (x-xn) m(x,t) dax
n
B2 = -Iin (X‘-Xn)(X‘XC.a.) m(-x’t) dx




(b) Quasi-steady aerodynamics

o]
]

aSo Ii‘n (x-x3) Cp (x,M) ax

qSe

va

t
@
L}

fi‘n (x=%p ) (X=X g.) Cp (x,M) dx



APPENDIX C

NUMERICAL FOURIER TRANSFORMS

As indicated in the previous analysis, it is necessary
to compute Fourier transforms of the given data., This could
well be a rofmidable task if the data were given in a
discrete form [u(zi), i=1, ,..,n] and if we had to consider
values of the transform variable sufficiently large to cause
the integrand to oscillate rapidly. However, the first dif-
ficulty may be avoided through the use of smoke-trail methods
of wind-velocity measurement and, as far as the second is
concerned, the largest value of the wave number k considered
in the present example did not cause any serious oscillation
of the integrand. True, the size of k was limited by the
type of wind data available., However, when continuous wind-
velocity readings become available, involving a more refined
representation of the wind'ﬁrofile and, thus, larger values
of k, the response properties of the vehicle.will most likely
place an upper limit on the values of k which need be
considered. Thus, it will still be possible to use a
relatively simple program for the computation of the neces-

sary Fouriler transforms.

Single Fourier Transform

By definition




U(k) = [7 u(z) e~}k® g, (C-1)

since 1t i1s assumed that

u(z) =0 for z<0
(C=2)
or z>D

However, noting that u(z) 1s defined only at the equidistant

points z , n=l,.,.., N where

z, = (n=-1)Az

(C-3)
Zy = D
Eq. (C-1) 1s rewritten as
N-1
U(k) = § fzn+1 u(z) e~1kz 44 (C-1)

n=1 Zn
and u(z) is assumed to be linear between the points z, and
Zn+1, 1.e.

u(z) = a z +b (C-5)

where

a = [u(z ,,) - u(z )¥az
(Cc-6)

b, = nu(z ) - (n-1) u(z )

i+l

For computation purposes Eq. (C-4) is rewritten in terms

of real and imaginary expressions.
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el (n)
U(k) = § [R%™(k) - 1I'"' (k)] (C-T7)

n=]1

where

R% (k) = !:2+1 u(z) cos (kz) dz
and (c-8)

1% (k) = 5:n+1 u(z) sin (kz) dz
n

The expression (C-5) is then substituted for u(z) into
Eq, (C~8) and, after simplification, the following results

are obtailned:
R%(k) = Az {[u(zn+1) - u(zp) (sin 2(n-1)al/2a

+ .8_}_2_“. [u(zn+l) cos (2n-=1)a - (u(z

) - u(zn))

n+l
(sin (2n-1)a)/2a] } (c-9)
1P (k) = bz %-[u(zn+1) - u(zg)1lcos 2(n-1)al/2a

+ §3§_2 [(u(zp+1) - u(zp))(cos (2n-1)a)/2a

+ u(zn4y) sin (2n-1)u]} (c-10)

where o = kA z/2,.
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Thus Egs. (C-9) and (C-10), along with Eq. (C-7),
constitute the solution of the problem,

Double Fourier Transform

The double Fourlier transform is computed by using the

previous results twice. Using Eqs. (18 a) and (C-2)

¢ .(ki,ky) = Igfg ¢uu(zl,22) ei(klzl-kzzz) dz,dz, (C-11)

or, rewrliting in terms of sums

wulkiok2) = 1 ] Iy ¢7uu(21,22)ei(klzl %222)4z,dz,
r=l s=] Zr ig

-

- 2 fzr+l [ 2 f atl qauu(21,22)e 1k22242,1et¥1%1gz,
r=1 s=]

(C-12)
Noting Eqs. (C-4) and (C-7), Eq. (C-12) is rewritten as

tuulky,kz) = il Iz:+l [ 21 (R® (21 ,kz)- 113(21,kz))]e1klz’d21
r= gs=
(C-13)
where
R'(Zl,kz) = ,zs".l ¢(21,22) cos kyz,dz,
Zs uu
and (C-18)

z
I% (23 ,k2) = [,5*1 @uu(z1,22) sin kpzpdz,
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Thus Eqs, (C-9) and (C-10) may be used to compute the above
expressions with u(z,.,) and u(z,) being replaced by
©@uulzp,2g41) and @,y (z,,2,), respectively. Finally, it
is noted that Eq. (C-=13) is a single Fourier transform in

z; and the previous results are again applied.

Check

In order to check the accuracy of the previous analysis,
the above expressions were used to compute the inverse
transforms also, The results were in good agreement, This
analysis was used to determine the Ak interval required in

the numerical integrations,
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(a)
Location Mean Standard
ft | ft-1b _| Deviation ft-1b
10,17 84698 | 45,454
33.32 19,710 109,290
53.50 12,551 84,322
67.42 9,981 52,884
86.72i 2,690 ‘ 15,181

Bending Moment Response at 36,000 ft
(b)
RESULTS

FIGURE 8
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BENDING MOMENT AT STATION n=2 DUE TO
INPUTS OF THE FORM u(z)=Csin(kz)

C=1 C=10 C=100

Altitude ft Bending Moment ft-lb

10,000 -.57001x10" -.57101x10° -.57889x10°
15,000 .31386x103 .31887x10" .31685x10°
20,000 .12733x10° .12734x10° .12650x10"
25,000 .79084x10" .78808x10° .80087x10°
30,000 -.12200x10° -.12361x10° -.11987x107
35,000 ~.12856x10° -.12498x10° -.12627x107
40,000 .17321x10° .17476x10° .17078x107
45,000 ".92296x10" .91845x10° .92593x10°
50,000 . 14638x10" 112035107 451535108

LINEARITY CHECK
TABLE 1
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ALTITUDE MEAN STANDARD

km ft/sec DEVIATION
ft/sec
0 0.93 . 9.27
1 0.62 20,89
2 7.35 22,34
3 13.94 25,32
4 19,91 28.80
5 25.82 33.33
6 31.49 38,41
7 37.40 43,34
8 43,86 48,45
9 50,07 55.01
10 56.89 61.77
11 63.94 67.58
12 69.06 71.09
13 69.94 71.34
14 64,66 67,44
15 54,86 66.55
16 42,29 52.95
17 20,00 47,20
18 14,86 36.87
19 6.23 26,66
20 2.21 11.92

EAST-WEST WIND VELOCITY STATISTICS

TABLE 2
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